This paper presents a numerical parametric study on design parameters of multispan viscoelastic shear deformable beams subjected to a moving mass via generalized moving least squares method (GMLSM). For utilizing Lagrange’s equations, the unknown parameters of the problem are stated in terms of GMLSM shape functions and the generalized Newmark-β scheme is applied for solving the discrete equations of motion in time domain. The effects of moving mass weight and velocity, material relaxation rate, slenderness, and span number of the beam on the design parameters and possibility of mass separation from the base beam are scrutinized in some detail. The results reveal that for low values of beam slenderness, the Euler–Bernoulli beam theory or even Timoshenko beam theory could not predict the real dynamic behavior of the multispan viscoelastic beam properly. Moreover, higher beam span number would result in higher inertial effects as well as design parameters values. Also, more distinction has been observed between the predicted values of design parameters regarding the shear deformable beams and those of Euler–Bernoulli beams, specifically for high levels of moving mass velocity and low values of material relaxation rate. Furthermore, the possibility of mass separation from the base beam moves to a greater extent as the beam span number increases and the relaxation rate of the beam material decreases, regardless of the assumed beam theory.

1.
Frýba
,
L.
, 1999,
Vibration of Solids and Structures Under Moving Loads
,
Thomas Telford
,
London
.
2.
Visweswara Rao
,
G.
, 2000, “
Linear Dynamics of an Elastic Beam Under Moving Loads
,”
ASME J. Vibr. Acoust.
0739-3717,
122
(
3
), pp.
281
289
.
3.
Bilello
,
C.
,
Bergman
,
L. A.
, and
Kuchma
,
D.
, 2004, “
Experimental Investigation of a Small-Scale Bridge Model Under a Moving Mass
,”
J. Struct. Eng.
0733-9445,
130
(
5
), pp.
799
804
.
4.
Nikkhoo
,
A.
,
Rofooei
,
F. R.
, and
Shadnam
,
M. R.
, 2007, “
Dynamic Behavior and Modal Control of Beams Under Moving Mass
,”
J. Sound Vib.
0022-460X,
306
(
3–5
), pp.
712
724
.
5.
Kiani
,
K.
,
Nikkhoo
,
A.
, and
Mehri
,
B.
, 2009, “
Prediction Capabilities of Classical and Shear Deformable Beam Models Excited by a Moving Mass
,”
J. Sound Vib.
0022-460X,
320
(
3
), pp.
632
648
.
6.
Lee
,
H. P.
, 1996, “
The Dynamic Response of a Timoshenko Beam Subjected to a Moving Mass
,”
J. Sound Vib.
0022-460X,
198
(
2
), pp.
249
256
.
7.
Wu
,
J. S.
, and
Dai
,
C. W.
, 1987, “
Dynamic Responses of Multispan Nonuniform Beam Due to Moving Loads
,”
J. Struct. Eng.
0733-9445,
113
(
3
), pp.
458
474
.
8.
Lee
,
H. P.
, 1994, “
Dynamic Response of a Beam With Intermediate Point Constraints Subjected to a Moving Load
,”
J. Sound Vib.
0022-460X,
171
(
3
), pp.
361
368
.
9.
Chatterjee
,
P. K.
,
Datta
,
T. K.
, and
Surana
,
C. S.
, 1994, “
Vibration of Continuous Bridges Under Moving Vehicles
,”
J. Sound Vib.
0022-460X,
169
(
5
), pp.
619
632
.
10.
Henchi
,
K.
,
Fafard
,
M.
,
Dhatt
,
G.
, and
Talbot
,
M.
, 1997, “
Dynamic Behaviour of Multispan Beams Under Moving Loads
,”
J. Sound Vib.
0022-460X,
199
(
1
), pp.
33
50
.
11.
Ichikawa
,
M.
,
Miyakawa
,
Y.
, and
Matsuda
,
A.
, 2000, “
Vibration Analysis of the Continuous Beam Subjected to a Moving Mass
,”
J. Sound Vib.
0022-460X,
230
(
3
), pp.
493
506
.
12.
Toshiaki
,
I.
, and
Kenichi
,
H.
, 2000, “
Transfer Matrix Analysis of Dynamic Responses of Multispan Beam Under Moving Loads With Spring and Damping
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
0387-5008,
66
(
647
), pp.
1377
1384
.
13.
Wang
,
R. T.
, 1997, “
Vibration of Multispan Timoshenko Beams to a Moving Force
,”
J. Sound Vib.
0022-460X,
207
(
5
), pp.
731
742
.
14.
Wang
,
R. T.
, and
Tsu
,
J. T.
, 2001, “
Out-of-Plane Vibration of a Multi-Span Timoshenko Curved Beam Due to a Moving Load Including the Warping Inertia of the Beam
,”
J. Chin. Inst. Eng.
0253-3839,
24
(
4
), pp.
407
417
.
15.
Zhu
,
X. Q.
, and
Law
,
S. S.
, 1999, “
Moving Forces Identification on a Multispan Continuous Bridge
,”
J. Sound Vib.
0022-460X,
228
(
2
), pp.
377
396
.
16.
Atluri
,
S. N.
,
Cho
,
Y. J.
, and
Kim
,
H. G.
, 1999, “
Analysis of Thin Beams Using the Meshless Local Petrov–Galerkin Method With Generalized Moving Least Squares Interpolations
,”
Comput. Mech.
0178-7675,
24
(
5
), pp.
334
347
.
17.
Reddy
,
J. N.
, 1997,
Mechanics of Laminated Composite Plates: Theory and Analysis
,
CRC
,
Boca Raton, FL
.
18.
Lee
,
J.
, and
Schultz
,
W. W.
, 2004, “
Eigenvalue Analysis of Timoshenko Beams and Axisymmetric Mindlin Plates by the Pseudospectral Method
,”
J. Sound Vib.
0022-460X,
269
, pp.
609
621
.
19.
Lin
,
H. P.
, and
Chang
,
S. C.
, 2005, “
Free Vibration Analysis of Multi-Span Beams With Intermediate Flexible Constraints
,”
J. Sound Vib.
0022-460X,
281
(
1–2
), pp.
155
169
.
20.
Lee
,
U.
, 1996, “
Revisiting the Moving Mass Problem: Onset of Separation Between the Mass and Beam
,”
ASME J. Vibr. Acoust.
0739-3717,
118
(
3
), pp.
516
521
.
You do not currently have access to this content.