The objective of this research in this paper is to investigate the feasibility of utilizing the Hilbert–Huang transform method for diagnosing the looseness faults of rotating machinery. The complicated vibration signals of rotating machinery are decomposed into finite number of intrinsic mode functions (IMFs) by integrated ensemble empirical mode decomposition technique. Through the significance test, the information-contained IMFs are selected to form the neat time-frequency Hilbert spectra and the corresponding marginal Hilbert spectra. The looseness faults at different components of the rotating machinery can be diagnosed by measuring the similarities among the information-contained marginal Hilbert spectra. The fault indicator index is defined to measure the similarities among the information-contained marginal Hilbert spectra of vibration signals. By combining the statistical concept of Mahalanobis distance and cosine index, the fault indicator indices can render the similarities among the marginal Hilbert spectra to enhanced and distinguishable quantities. A test bed of rotor-bearing system is performed to illustrate the looseness faults at different mechanical components. The effectiveness of the proposed approach is evaluated by measuring the fault indicator indices among the marginal Hilbert spectra of different looseness types. The results show that the proposed diagnosis method is capable of classifying the distinction among the marginal Hilbert spectra distributions and thus identify the type of looseness fault at machinery.

1.
Kuo
,
R. J.
, 1995, “
Intelligent Diagnosis for Turbine Blade Faults Using Artificial Neural Networks and Fuzzy Logic
,”
Eng. Applic. Artif. Intell.
0952-1976,
8
, pp.
25
34
.
2.
Kuo
,
H. C.
,
Wu
,
L. J.
, and
Chen
,
J. H.
, 2002, “
Neural-Fuzzy Fault Diagnosis in a Marine Propulsion Shaft System
,”
J. Mater. Process. Technol.
0924-0136,
122
, pp.
12
22
.
3.
El-Shafei
,
A.
,
Hassan
,
T. A. F.
,
Soliman
,
A. K.
,
Zeyada
,
Y.
, and
Rieger
,
Y.
, 2007, “
Neural Network and Fuzzy Logic Diagnostic of 1x Faults in Rotating Machinery
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
703
710
.
4.
Lim
,
M. H.
, and
Leong
,
M. S.
, 2005, “
“Diagnosis for Loose Blades in Gas Turbines Using Wavelet Analysis
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
, pp.
314
322
.
5.
Inoue
,
T.
,
Sueoka
,
A.
,
Kanemoto
,
H.
,
Odahara
,
S.
, and
Murakami
,
Y.
, 2007, “
Detection of Minute Signs of a Small Fault in a Periodic or Quasi-Periodic Signal by the Harmonic Wavelet Transform
,”
Mech. Syst. Signal Process.
0888-3270,
21
, pp.
2041
2055
.
6.
Wait
,
J. R.
,
Park
,
G.
, and
Farrar
,
C. R.
, 2005, “
Integrated Structural Health Assessment Using Piezoelectric Active Sensors
,”
Shock Vib.
1070-9622,
12
(
6
), pp.
389
405
.
7.
Nichols
,
J. M.
,
Trickey
,
S. T.
,
Seaver
,
M.
,
Motley
,
S. R.
, and
Eisner
,
E. D.
, 2007, “
Using Ambient Vibrations to Detect Loosening of a Composite-to-Metal Bolted Joint in the Presence of Strong Temperature Fluctuations
,”
ASME J. Vibr. Acoust.
0739-3717,
129
, pp.
710
717
.
8.
Mickens
,
T.
,
Schulz
,
M.
,
Sundaresan
,
M.
, and
Ghoshal
,
A.
, 2003, “
Structrual Health Monitoring of an Aircraft Joint
,”
Mech. Syst. Signal Process.
0888-3270,
17
(
2
), pp.
285
303
.
9.
Cheng
,
J.
,
Yu
,
D.
, and
Yang
,
Y.
, 2007, “
The Application of Energy Operator Demodulation Approach Based on EMD in Machinery Fault Diagnosis
,”
Mech. Syst. Signal Process.
0888-3270,
21
, pp.
668
677
.
10.
Wu
,
Z.
, and
Huang
,
N. E.
, 2004, “
A Study of the Characteristics of White Noise Using the Empirical Mode Decomposition Method
,”
Proc. R. Soc. London, Ser. A
0950-1207,
460
, pp.
1597
1611
.
11.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N. -C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
, 1998, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis
,”
Proc. R. Soc. London, Ser. A
0950-1207,
454
, pp.
903
995
.
12.
Huang
,
N. E.
, and
Shen
,
S. S.
, 2005,
Hilbert-Huang Transform and Its Applications, Interdisciplinary Mathematical Sciences
, Vol.
5
,
World Scientific
,
Singapore
.
13.
Wu
,
Z.
, and
Huang
,
N. E.
, 2009, “
Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method
,”
Advances in Adaptive Data Analysis
,
1
(
1
), pp.
1
41
.
14.
Venkateswarlu
,
N. B.
, and
Singh
,
R. P.
, 1995, “
Various Approaches to Speed-Up Mahalanobis Distance Classifier
,”
Int. J. Remote Sens.
0143-1161,
16
(
16
), pp.
3157
3163
.
15.
Titchmarsh
,
E. C.
, 1948,
Introduction to the Theory of Fourier Integrals
,
Oxford University Press
,
New York
.
You do not currently have access to this content.