The flexural vibration band gap in a periodic fluid-conveying pipe system is studied based on the Timoshenko beam theory. The band structure of the flexural wave is calculated with a transfer matrix method to investigate the gap frequency range. The effects of the rotary inertia and shear deformation on the gap frequency range are considered. The frequency response of finite periodic pipe is calculated with a finite element method to validate the gap frequency ranges.
Issue Section:
Technical Briefs
1.
Koo
, G. H.
, and Park
, Y. S.
, 1996, “Vibration Analysis of a 3-Dimensional Piping System Conveying Fluid by Wave Approach
,” Int. J. Pressure Vessels Piping
0308-0161, 67
, pp. 249
–256
.2.
Sorokin
, S. V.
, Olhoff
, N.
, and Ershova
, O. A.
, 2008, “Analysis of the Energy Transmission in Spatial Piping Systems With Heavy Internal Fluid Loading
,” J. Sound Vib.
0022-460X, 310
, pp. 1141
–1166
.3.
Koo
, G. H.
, and Park
, Y. S.
, 1998, “Vibration Reduction by Using Periodic Supports in Piping System
,” J. Sound Vib.
0022-460X, 210
, pp. 53
–68
.4.
Kang
, M. G.
, 2000, “The Influence of Rotary Inertia of Concentrated Masses on the Natural Vibrations of Fluid-Conveying Pipes
,” J. Sound Vib.
0022-460X, 238
, pp. 179
–187
.5.
Lee
, S. Y.
, and Mote
, C. D.
, Jr., 1997, “A Generalized Treatment of the Energetics of Translating Continua Part II: Beams and Fluid Conveying Pipes
,” J. Sound Vib.
0022-460X, 204
, pp. 735
–753
.6.
Lesmez
, M. W.
, 1989, “Modal Analysis of Vibrations in Liquid-Filled Piping System
,” Ph.D. thesis, Michigan State University, MI.7.
Lesmez
, M. W.
, Wiggert
D. C.
, and Hatfield
F. J.
, 1990, “Modal Analysis of Vibrations in Liquid-Filled Piping Systems
,” ASME J. Fluids Eng.
0098-2202, 112
, pp. 311
–318
.8.
Paidoussis
, M.
, 1998, Fluid-Structure Interactions, Slender Structures and Axial Flow
, Academic
, San Diego, CA
, Vol. 1
.9.
Kushwaha
, M. S.
, Halevi
, P.
, Dobrzynski
, L.
, and Djafari-Rouhani
, B.
, 1993, “Acoustic Band Structure of Periodic Elastic Composites
,” Phys. Rev. Lett.
0031-9007, 71
, pp. 2022
–2025
.10.
Kushwaha
, M. S.
, Halevi
, P.
, Martinez
, G.
, Dobrzynski
, L.
, and Djafari-Rouhani
, B.
, 1994, “Theory of Acoustic Band Structure of Periodic Elastic Composites
,” Phys. Rev. B
0163-1829, 49
, pp. 2313
–2322
.11.
Sigalas
, M. M.
, and Economou
, E. N.
, 1992, “Elastic and Acoustic Wave Band Structure
,” J. Sound Vib.
0022-460X, 158
, pp. 377
–382
.12.
Wen
, J. H.
, Wang
, G.
, Yu
, D. L.
, Zhao
, H. G.
, and Liu
, Y. Z.
, 2005, “Theoretical and Experimental Investigation of Flexural Wave Propagation in Straight Beams With Periodic Structures: Application to a Vibration Isolation Structure
,” J. Appl. Phys.
0021-8979, 97
, p. 114907
.13.
Yu
, D. L.
, Liu
, Y. Z.
, Zhao
, H. G.
, Wang
, G.
, and Qiu
, J.
, 2006, “Flexural Vibration Band Gaps in Euler-Bernoulli Beams With Two-Degree-of-Freedom Locally Resonant Structures
,” Phys. Rev. B
0163-1829, 73
, p. 064301
.14.
Yu
, D. L.
, Wen
, J. H.
, Zhao
, H. G.
, Liu
, Y. Z.
, and Wen
, X. S.
, 2008, “Vibration Reduction by Using the Idea of Phononic Crystals in a Pipe Conveying Fluid
,” J. Sound Vib.
0022-460X, 318
, pp. 193
–205
.15.
Landau
, L. D.
, and Lifshitz
, E. M.
, 1986, Theory of Elasticity
, Pergamon
, New York
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.