The flexural vibration band gap in a periodic fluid-conveying pipe system is studied based on the Timoshenko beam theory. The band structure of the flexural wave is calculated with a transfer matrix method to investigate the gap frequency range. The effects of the rotary inertia and shear deformation on the gap frequency range are considered. The frequency response of finite periodic pipe is calculated with a finite element method to validate the gap frequency ranges.

1.
Koo
,
G. H.
, and
Park
,
Y. S.
, 1996, “
Vibration Analysis of a 3-Dimensional Piping System Conveying Fluid by Wave Approach
,”
Int. J. Pressure Vessels Piping
0308-0161,
67
, pp.
249
256
.
2.
Sorokin
,
S. V.
,
Olhoff
,
N.
, and
Ershova
,
O. A.
, 2008, “
Analysis of the Energy Transmission in Spatial Piping Systems With Heavy Internal Fluid Loading
,”
J. Sound Vib.
0022-460X,
310
, pp.
1141
1166
.
3.
Koo
,
G. H.
, and
Park
,
Y. S.
, 1998, “
Vibration Reduction by Using Periodic Supports in Piping System
,”
J. Sound Vib.
0022-460X,
210
, pp.
53
68
.
4.
Kang
,
M. G.
, 2000, “
The Influence of Rotary Inertia of Concentrated Masses on the Natural Vibrations of Fluid-Conveying Pipes
,”
J. Sound Vib.
0022-460X,
238
, pp.
179
187
.
5.
Lee
,
S. Y.
, and
Mote
,
C. D.
, Jr.
, 1997, “
A Generalized Treatment of the Energetics of Translating Continua Part II: Beams and Fluid Conveying Pipes
,”
J. Sound Vib.
0022-460X,
204
, pp.
735
753
.
6.
Lesmez
,
M. W.
, 1989, “
Modal Analysis of Vibrations in Liquid-Filled Piping System
,” Ph.D. thesis, Michigan State University, MI.
7.
Lesmez
,
M. W.
,
Wiggert
D. C.
, and
Hatfield
F. J.
, 1990, “
Modal Analysis of Vibrations in Liquid-Filled Piping Systems
,”
ASME J. Fluids Eng.
0098-2202,
112
, pp.
311
318
.
8.
Paidoussis
,
M.
, 1998,
Fluid-Structure Interactions, Slender Structures and Axial Flow
,
Academic
,
San Diego, CA
, Vol.
1
.
9.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
, 1993, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
0031-9007,
71
, pp.
2022
2025
.
10.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Martinez
,
G.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
, 1994, “
Theory of Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. B
0163-1829,
49
, pp.
2313
2322
.
11.
Sigalas
,
M. M.
, and
Economou
,
E. N.
, 1992, “
Elastic and Acoustic Wave Band Structure
,”
J. Sound Vib.
0022-460X,
158
, pp.
377
382
.
12.
Wen
,
J. H.
,
Wang
,
G.
,
Yu
,
D. L.
,
Zhao
,
H. G.
, and
Liu
,
Y. Z.
, 2005, “
Theoretical and Experimental Investigation of Flexural Wave Propagation in Straight Beams With Periodic Structures: Application to a Vibration Isolation Structure
,”
J. Appl. Phys.
0021-8979,
97
, p.
114907
.
13.
Yu
,
D. L.
,
Liu
,
Y. Z.
,
Zhao
,
H. G.
,
Wang
,
G.
, and
Qiu
,
J.
, 2006, “
Flexural Vibration Band Gaps in Euler-Bernoulli Beams With Two-Degree-of-Freedom Locally Resonant Structures
,”
Phys. Rev. B
0163-1829,
73
, p.
064301
.
14.
Yu
,
D. L.
,
Wen
,
J. H.
,
Zhao
,
H. G.
,
Liu
,
Y. Z.
, and
Wen
,
X. S.
, 2008, “
Vibration Reduction by Using the Idea of Phononic Crystals in a Pipe Conveying Fluid
,”
J. Sound Vib.
0022-460X,
318
, pp.
193
205
.
15.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
, 1986,
Theory of Elasticity
,
Pergamon
,
New York
.
You do not currently have access to this content.