Abstract

The phenomenon of vibration mode localization in periodic and near periodic structures has been well documented over the past four decades. In spite of its long history, and presence in a wide range of engineering structures, the approach to detect mode localization remains rather rudimentary in nature. The primary way is via a visual inspection of the mode shapes. For systems with complex geometry, the judgment of mode localization can become subjective as it would depend on visual ability and interpretation of the analyst. This paper suggests a numerical approach using the modal data to quantify mode localization by utilizing the modal assurance criterion (MAC) across all the modes due to changes in some system parameters. The proposed MAC localization factor (MACLF) gives a value between 0 and 1 and therefore gives an explicit value for the degree of mode localization. First-order sensitivity based approaches are proposed to reduce the computational effort. A two-degree-of-freedom system is first used to demonstrate the applicability of the proposed approach. The finite element method (FEM) was used to study two progressively complex systems, namely, a coupled two-cantilever beam system and an idealized turbine blade. Modal data is corrupted by random noise to simulate robustness when applying the MACLF to experimental data to quantify the degree of localization. Extensive numerical results have been given to illustrate the applicability of the proposed approach.

References

1.
Hart
,
J. D.
,
Ford
,
G. W.
, and
Saure
,
R.
,
1992
, “
Mitigation of Wind Induced Vibration of Arctic Pipeline Systems
,” ASME 11th International Conference on Offshore Mechanics and Arctic Engineering, Calgary, AB, Canada, June 7–12.
2.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2006
, “
Modeling and Analysis of Mistuned Bladed Disk Vibration: Status and Emerging Directions
,”
J. Propul. Power
,
22
(
2
), pp.
384
396
.
3.
Nikolic
,
M.
,
2006
, “
New Insights into the Blade Mistuning Problem
,” Ph.D. thesis, Imperial College, London.
4.
Nikolic
,
M.
,
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2008
, “
Robust Strategies for Forced Response Reduction of Bladed Disks Based on Large Mistuning Concept
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), pp.
285
295
.
5.
Blair
,
A. J.
,
1997
, “
A Design Strategy for Preventing High Cycle Fatigue by Minimising Sensitivity of Bladed Disks to Mistuning
,” Master's thesis, Wright State University, Dayton, OH.
6.
Chen
,
Y. F.
, and
Shen
,
I. Y.
,
2015
, “
Mathematical Insights Into Linear Mode Localization in Nearly Cyclic Symmetric Rotors With Mistune
,”
ASME J. Vib. Acoust.
,
137
(
4
), p.
041007
.
7.
Pestel
,
E. C.
, and
Leckie
,
F. A.
,
1963
,
Matrix Methods in Elastomechanics
,
McGraw-Hill
,
New York
.
8.
Soong
,
T. T.
, and
Bogdanoff
,
J. L.
,
1963
, “
On the Natural Frequencies of a Disordered Linear Chain of n Degrees of Freedom
,”
Int. J. Mech. Sci.
,
6
(
3
), pp.
225
237
.
9.
Lin
,
Y. K.
, and
Yang
,
J. N.
,
1974
, “
Free Vibration of a Disordered Periodic Beam
,”
ASME J. Appl. Mech.
,
41
(
2
), pp.
383
391
.
10.
Yang
,
J. N.
, and
Lin
,
Y. K.
,
1975
, “
Frequency Response Functions of a Disordered Periodic Beam
,”
J. Sound Vib.
,
38
(
3
), pp.
317
340
.
11.
Kissel
,
G. J.
,
1988
, “
Localization in Disordered Periodic Structures
,” Ph.D. thesis, MIT, Boston.
12.
Kissel
,
G. J.
,
1992
, “
Localization Factor for Multichannel Disordered Systems
,”
Phys. Rev. A
,
44
(
2
), pp.
1008
1014
.
13.
Lin
,
Y. K.
, and
Cai
,
G. Q.
,
1991
,
Disordered Periodic Structures
,
Springer
,
Dordrecht, The Netherlands
.
14.
Lin
,
Y. K.
, and
Cai
,
G. Q.
,
1995
,
Probabilistic Structural Dynamics
,
McGraw-Hill
, New York.
15.
Xie
,
W. C.
, and
Ariaratnam
,
S. T.
,
1994
, “
Numerical Computation of Wave Localization in Large Disordered Beamlike Lattice Trusses
,”
AIAA J.
,
32
(
8
), pp.
1724
1732
.
16.
Xie
,
W. C.
, and
Ariaratnam
,
S. T.
,
1996
, “
Vibration Mode Localization in Disordered Cyclic Structures: Single Substructure Mode
,”
J. Sound Vib.
,
189
(
5
), pp.
625
645
.
17.
Xie
,
W. C.
, and
Ariaratnam
,
S. T.
,
1996
, “
Vibration Mode Localization in Disordered Cyclic Structures: Single Substructure Mode
,”
J. Sound Vib.
,
189
(
5
), pp.
647
660
.
18.
Ariaratnam
,
S. T.
, and
Xie
,
W. C.
,
1995
, “
Wave Localization in Randomly Disordered Nearly Periodic Long Continuous Beams
,”
J. Sound Vib.
,
181
(
1
), pp.
7
22
.
19.
Fang
,
Z.
,
1995
, “
Dynamic Analysis of Structures With Uncertain Parameters Using the Transfer Matrix Method
,”
Comput. Struct.
,
55
(
6
), pp.
1037
1044
.
20.
Mitchell
,
T. P.
, and
Moini
,
H. A.
,
1992
, “
An Algorithm for Finding the Natural Frequencies of a Randomly Supported String
,”
Probab. Eng. Mech.
,
7
(
1
), pp.
23
26
.
21.
Langley
,
R. S.
,
1996
, “
A Transfer Matrix Analysis of the Energetics of Structural Wave Motion and Harmonic Vibration
,”
Proc. R. Soc. Ser. A
,
452
(
1950
), pp.
1631
1648
.
22.
du Bois
,
J. L.
,
Adhikari
,
S.
, and
Lieven
,
N. A. J.
,
2009
, “
Mode Veering in Stressed Framed Structures
,”
J. Sound Vib.
,
322
(
4–5
), pp.
1117
1124
.
23.
Liu
,
X. L.
,
2002
, “
Behaviour of Derivatives of Eigenvalues and Eigenvectors in Curve Veering and Mode Localization and Their Relation to Close Eigenvalues
,”
J. Sound Vib.
,
256
(
3
), pp.
551
564
.
24.
du Bois
,
J. L.
,
Adhikari
,
S.
, and
Lieven
,
N. A. J.
,
2011
, “
On the Quantification of Eigenvalue Curve Veering: A Veering Index
,”
ASME J. Appl. Mech.
,
78
(
4
), p.
041007
.
25.
Allemang
,
R. J.
,
2003
, “
The Modal Assurance Criterion - Twenty Years of Use and Abuse
,”
Sound Vib.
,
37
(
8
), pp.
14
23
.
26.
Pierre
,
C.
,
1988
, “
Mode Localization and Eigenvalue Loci Veering Phenomena in Disordered Structures
,”
J. Sound Vib.
,
126
(
3
), pp.
485
502
.
27.
Fox
,
R. L.
, and
Kapoor
,
M. P.
,
1968
, “
Rates of Change of Eigenvalues and Eigenvectors
,”
AIAA J.
,
6
(
12
), pp.
2426
2429
.
28.
Adhikari
,
S.
,
2000
, “
Calculation of Derivative of Complex Modes Using Classical Normal Modes
,”
Comput. Struct.
,
77
(
6
), pp.
625
633
.
29.
Adhikari
,
S.
,
2001
, “
Eigenrelations for Non-Viscously Damped Systems
,”
AIAA J.
,
39
(
8
), pp.
1624
1630
.
30.
Rao
,
J. S.
,
2006
, “
Mistuning of Bladed Disk Assemblies to Mitigate Resonance
,”
Adv. Vib. Eng.
,
5
(
1
), pp.
17
24
.
31.
Vijayan
,
K.
, and
Woodhouse
,
J.
,
2014
, “
Shock Transmission in a Coupled Beam System
,”
J. Sound Vib.
,
333
(
5
), pp.
1379
1389
.
32.
Vijayan
,
K.
, and
Woodhouse
,
J.
,
2013
, “
Shock Transmission in a Coupled Beam System
,”
J. Sound Vib.
,
332
(
16
), pp.
3681
3695
.
33.
Friswell
,
M. I.
, and
Mottershead
,
J. E.
,
1999
,
Finite Element Model Updating in Structural Dynamics
,
Kluwer Academic Publishers
,
UK
.
34.
Mills-Curran
,
W. C.
,
1988
, “
Calculation of Eigenvector Derivatives for Structures With Repeated Eigenvalues
,”
AIAA J.
,
26
(
7
), pp.
867
871
.
35.
Friswell
,
M. I.
,
1996
, “
The Derivatives of Repeated Eigenvalues and Their Associated Eigenvectors
,”
ASME J. Vib. Acoust.
,
118
(
3
), pp.
390
397
.
You do not currently have access to this content.