Microelectromechanical system (MEMS) based arrays have been employed to increase the bandwidth and sensitivity of many sensors and actuators. In this paper, we present an approximate model to demonstrate the tuning of in-plane and out-of-plane frequencies of MEMS arrays consisting of fixed–fixed beams. Subsequently, we apply the Galerkin's method with single approximate mode to obtain the reduced-order static and dynamic equations. Corresponding to a given direct current (DC) voltage, we first solve the static equations and then obtain corresponding frequencies from the dynamic equation for single beam and arrays of multibeams. We compare the model with available experimental results. Later, we show the influence of different frequency tuning parameters such as the initial tensions, fringing field coefficients and the variable inter beam gaps between the microbeam and electrodes to control the coupling region and different modal frequencies of the beam. Finally, we obtain a compact model which can be used in optimizing the bandwidth and sensitivity of microbeams array.

References

1.
Suzuki
,
N.
,
Tanigawa
,
H.
, and
Suzuki
,
K.
,
2013
, “
Zeptogram-Scale Nanomechanical Mass Sensing
,”
J. Micromech. Microeng.
,
23
(
4
), pp.
045018
045030
.
2.
Spletzer
,
M.
,
Raman
,
A.
,
Sumali
,
H.
, and
Sullivan
,
J. P.
,
2008
, “
Highly Sensitive Mass Detection and Identification Using Vibration Localization in Coupled Microcantilever Arrays
,”
Appl. Phys. Lett.
,
92
(
11
), p.
114102
.
3.
Hopcroft
,
M. A.
,
Kim
,
B.
,
Chandorkar
,
S.
,
Melamud
,
R.
,
Agarwal
,
M.
,
Jha
,
C. M.
,
Bahl
,
G.
,
Salvia
,
J.
,
Mehta
,
H.
,
Lee
,
H. K.
,
Candler
,
R. N.
, and
Kenny
,
T. W.
,
2007
, “
Using the Temperature Dependence of Resonator Quality Factor as a Thermometer
,”
Appl. Phys. Lett.
,
91
(
1
), p.
013505
.
4.
Verbridge
,
S. S.
,
Shapiro
,
D. F.
,
Craighead
,
H. G.
, and
Parpia
,
J. M.
,
2007
, “
Macroscopic Tuning of Nanomechanics: Substrate Bending for Reversible Control of Frequency and Quality Factor of Nanostring Resonators
,”
Nano Lett.
,
7
(
6
), pp.
1728
1735
.
5.
Pandey
,
A. K.
,
Gottlieb
,
O.
,
Shtempluck
,
O.
, and
Buks
,
E.
,
2006
, “
Performance of an AuPd Micromechanical Resonator as a Temperature Sensor
,”
Appl. Phys. Lett.
,
96
(
20
), p.
203105
.
6.
Remtema
,
T.
, and
Lin
,
L.
,
2001
, “
Active Frequency Tuning for Micro Resonators by Localized Thermal Stressing Effects
,”
Sens. Actuators
, A,
91
(
3
), pp.
326
332
.
7.
Buks
,
E.
, and
Roukes
,
M. L.
,
2002
, “
Electrically Tunable Collective Response in a Coupled Micromechanical Array
,”
IEEE J. Microelectromech. Syst.
,
11
(
6
), pp.
802
807
.
8.
Kozinsky
,
I.
,
Postma
,
H. W. Ch.
,
Bargatin
,
I.
, and
Roukes
,
M. L.
,
2006
, “
Tuning Nonlinearity, Dynamic Range, and Frequency of Nanomechanical Resonators
,”
Appl. Phys. Lett.
,
88
(
25
), p.
253101
.
9.
Solanki
,
H. S.
,
Sengupta
,
S.
,
Dhara
,
S.
,
Singh
,
V.
,
Patil
,
S.
,
Dhall
,
R.
,
Parpia
,
J.
,
Bhattacharya
,
A.
, and
Deshmukh
,
M. M.
,
2010
, “
Tuning Mechanical Modes and Influence of Charge Screening in Nanowire Resonators
,”
Phys. Rev. B
,
81
(
11
), p.
115459
.
10.
Zalalutdinov
,
M. K.
,
Baldwin
,
J. W.
,
Marcus
,
M. H.
,
Reichenbach
,
R. B.
,
Parpia
,
J. M.
, and
Houston
,
B. H.
,
2006
, “
Two-Dimensional Array of Coupled Nanomechanical Resonators
,”
Appl. Phys. Lett.
,
88
(
14
), p.
143504
.
11.
Krylov
,
S.
,
Lulinsky
,
S.
,
Ilic
,
B. R.
, and
Schneider
,
I.
,
2014
, “
Collective Dynamics and Pattern Switching in an Array of Parametrically Excited Microcantilevers Interacting Through Fringing Electrostatic Fields
,”
Appl. Phys. Lett.
,
105
(
7
), p.
071909
.
12.
Thijssen
,
R.
,
Kippenberg
,
T. J.
,
Polman
,
A.
, and
Verhagen
,
E.
,
2014
, “
Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators
,”
ACS Photonics
,
1
(
11
), pp.
1181
1188
.
13.
Kambali
,
P. N.
, and
Pandey
,
A. K.
,
2015
, “
Nonlinear Response of a Microbeam Under Combined Direct and Fringing Field Excitation
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051010
.
14.
Gutschmidt
,
S.
, and
Gottlieb
,
O.
,
2012
, “
Nonlinear Dynamic Behavior of a Microbeam Array Subject to Parametric Actuation at Low, Medium and Large DC-Voltages
,”
Nonlinear Dyn.
,
67
(
1
), pp.
1
36
.
15.
Gutschmidt
,
S.
, and
Gottlieb
,
O.
,
2010
, “
Internal Resonance and Bifurcations of an Array Below the First Pull-in Instability
,”
Int. J. Bifurcation Chaos
,
20
(03), pp.
605
618
.
16.
Pandey
,
A. K.
,
2013
, “
Effect of Coupled Modes on Pull-in Voltage and Frequency Tuning of a NEMS Device
,”
J. Micromech. Microeng.
,
23
(
8
), p.
085015
.
17.
Kambali
,
P. N.
,
Swain
,
G.
,
Pandey
,
A.
,
Buks
,
K.
,
E.
, and
Gottlieb
,
O.
,
2015
, “
Coupling and Tuning of Modal Frequencies in Direct Current Biased Microelectromechanical Systems Arrays
,”
Appl. Phys. Lett.
,
107
(
6
), p.
063104
.
18.
Leamy
,
M. J.
, and
Gottlieb
,
O.
,
2000
, “
Internal Resonances in Whirling Strings Involving Longitudinal Dynamics and Material Non-Linearities
,”
J. Sound Vib.
,
236
(
4
), pp.
683
703
.
19.
Pandey
,
A. K.
,
Venkatesh
,
K. P.
, and
Pratap
,
R.
,
2009
, “
Effect of Metal Coating and Residual Effect on the Resonant Frequency of MEMS Resonators
,”
Sadhana
,
34
(
4
), pp.
651
662
.
20.
Huang
,
X. M. H.
,
Manolidis
,
M.
,
Jun
,
S. C.
, and
Hone
,
J.
,
2005
, “
Nanomechanical Hydrogen Sensing
,”
Appl. Phys. Lett.
,
86
(
14
), p.
143104
.
You do not currently have access to this content.