Abstract

Recently, the potential of metamaterials and phononic crystals to cope with conflicting requirements for obtaining lightweight structures with desirable noise and vibration properties has been demonstrated. These, often periodic, structures are commonly studied based on their representative unit cell (UC) of which the vibro-acoustic performance is examined by means of their wave propagation, visualized by dispersion curves. Typically, the UC is discretized using a finite element technique to capture the possibly complex geometry. This leads to a high computation cost for the dispersion curve calculation which can be strongly reduced by applying modal-based model order reduction techniques such as the (generalized) Bloch mode synthesis (GBMS). In this paper, the choice of the UC is shown to have an impact on the dispersion curve calculation time. Moreover, the efficiency of GBMS strongly depends on the UC choice. The highest reduction in computation time is accomplished when the number of boundary degrees-of-freedom is limited.

References

1.
Hussein
,
M.
,
Leamy
,
M.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
2.
Xiao
,
Y.
,
Wen
,
J.
,
Wang
,
G.
, and
Wen
,
X.
,
2013
, “
Theoretical and Experimental Study of Locally Resonant and Bragg Band Gaps in Flexural Beams Carrying Periodic Arrays of Beam-Like Resonators
,”
ASME J. Vib. Acoust.
,
135
(
4
), p.
041006
.
3.
Claeys
,
C.
,
Deckers
,
E.
,
Pluymers
,
B.
, and
Desmet
,
W.
,
2016
, “
A Lightweight Vibro-Acoustic Metamaterial Demonstrator: Numerical and Experimental Investigation
,”
Mech. Syst. Signal Process.
,
70–71
, pp.
853
880
.
4.
D’Alessandro
,
L.
,
Belloni
,
E.
,
Ardito
,
R.
,
Corigliano
,
A.
, and
Braghin
,
F.
,
2016
, “
Modeling and Experimental Verification of an Ultra-Wide Bandgap in 3D Phononic Crystal
,”
Appl. Phys. Lett.
,
109
(
22
), p.
221907
.
5.
Lucklum
,
F.
, and
Vellekoop
,
M.
,
2018
, “
Bandgap Engineering of Three-Dimensional Phononic Crystals in a Simple Cubic Lattice
,”
Appl. Phys. Lett.
,
113
(
20
), p.
201902
.
6.
Krattiger
,
D.
, and
Hussein
,
M.
,
2018
, “
Generalized Bloch Mode Synthesis for Accelerated Calculation of Elastic Band Structures
,”
J. Comput. Phys.
,
357
, pp.
183
205
.
7.
Bloch
,
F.
,
1929
, “
Über die quantenmechanik der elektronen in kristallgittern
,”
Z. Phys.
,
52
(
7
), pp.
555
600
.
8.
Mace
,
B.
, and
Manconi
,
E.
,
2008
, “
Modelling Wave Propagation in Two-Dimensional Structures Using Finite Element Analysis
,”
J. Sound Vib.
,
318
(
4–5
), pp.
884
902
.
9.
Benner
,
P.
,
Schilders
,
W.
,
Grivet-Talocia
,
S.
,
Quarteroni
,
A.
,
Rozza
,
G.
, and
Miguel Silveira
,
L.
,
2020
,
Model Order Reduction: Volume 3 Applications
,
De Gruyter
,
Berlin
.
10.
van de Walle
,
A.
,
Naets
,
F.
,
Deckers
,
E.
, and
Desmet
,
W.
,
2017
, “
Stability-Preserving Model Order Reduction for Time-Domain Simulation of Vibro-Acoustic FE Models
,”
Int. J. Numer. Methods Eng.
,
109
(
6
), pp.
889
912
.
11.
Chen
,
Y.
,
Zhang
,
B.
,
Zhang
,
N.
, and
Zheng
,
M.
,
2015
, “
A Condensation Method for the Dynamic Analysis of Vertical Vehicle–Track Interaction Considering Vehicle Flexibility
,”
ASME J. Vib. Acoust.
,
137
(
4
), p.
041010
.
12.
De Gregoriis
,
D.
,
Naets
,
F.
,
Kindt
,
P.
, and
Desmet
,
W.
,
2019
, “
Application of a Priori Hyper-Reduction to the Nonlinear Dynamic Finite Element Simulation of a Rolling Car Tire
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
11
), p.
111009
.
13.
An
,
X.
,
Lai
,
C.
,
Fan
,
H.
, and
Zhang
,
C.
,
2020
, “
3D Acoustic Metamaterial-Based Mechanical Metalattice Structures for Low-Frequency and Broadband Vibration Attenuation
,”
Int. J. Solids Struct.
,
191–192
, pp.
293
306
.
14.
Hussein
,
M.
,
2009
, “
Reduced Bloch Mode Expansion for Periodic Media Band Structure Calculations
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
465
(
2109
), pp.
2825
2848
.
15.
Boukadia
,
R.
,
Droz
,
C.
,
Ichchou
,
M.
, and
Desmet
,
W.
,
2018
, “
A Bloch Wave Reduction Scheme for Ultrafast Band Diagram and Dynamic Response Computation in Periodic Structures
,”
Finite Elements Anal. Des.
,
148
, pp.
1
12
.
16.
Droz
,
C.
,
Zhou
,
C.
,
Ichchou
,
M.
, and
Lainé
,
J.-P.
,
2016
, “
A Hybrid Wave-Mode Formulation for the Vibro-Acoustic Analysis of 2D Periodic Structures
,”
J. Sound Vib.
,
363
, pp.
285
302
.
17.
Krattiger
,
D.
, and
Hussein
,
M.
,
2014
, “
Bloch Mode Synthesis: Ultrafast Methodology for Elastic Band-Structure Calculations
,”
Phys. Rev. E
,
90
(
6
), p.
063306
.
18.
Krattiger
,
D.
,
Wu
,
L.
,
Zacharczuk
,
M.
,
Buck
,
M.
,
Kuether
,
R.
,
Allen
,
M.
,
Tiso
,
P.
, and
Brake
,
M.
,
2019
, “
Interface Reduction for Hurty/Craig-Bampton Substructured Models: Review and Improvements
,”
Mech. Syst. Signal Process.
,
114
, pp.
579
603
.
19.
Van Belle
,
L.
,
de Melo Filho
,
N.
,
Clasing Villanueva
,
M.
,
Claeys
,
C.
,
Deckers
,
E.
,
Naets
,
F.
, and
Desmet
,
W.
,
2020
, “
Fast Metamaterial Design Optimization Using Reduced Order Unit Cell Modeling
,”
International Conference on Noise and Vibration Engineering – ISMA 2020
,
Leuven, Belgium
,
Sept. 7–9
.
20.
Kittel
,
C.
,
2010
,
Introduction to Solid State Physics
,
Wiley
,
New York
.
21.
Herrmann
,
J.
,
Maess
,
M.
, and
Gaul
,
L.
,
2010
, “
Substructuring Including Interface Reduction for the Efficient Vibro-Acoustic Simulation of Fluid-Filled Piping Systems
,”
Mech. Syst. Signal Process.
,
24
(
1
), pp.
153
163
.
22.
Setyawan
,
W.
, and
Curtarolo
,
S.
,
2010
, “
High-Throughput Electronic Band Structure Calculations: Challenges and Tools
,”
Comput. Mater. Sci.
,
49
(
2
), pp.
299
312
.
23.
Zienkiewicz
,
O.
, and
Taylor
,
R.
,
2000
,
The Finite Element Method; Volume 1: Basic Formulation and Linear Problems
,
Butterworth-Heinemann
,
Oxford, UK
.
24.
Golub
,
G.
, and
Van der Vorst
,
H.
,
2000
, “
Eigenvalue Computation in the 20th Century
,”
J. Comput. Appl. Math.
,
123
(
1–2
), pp.
35
65
.
You do not currently have access to this content.