Abstract

Planetary gearboxes are susceptible to premature failures due to cyclic random loadings and extreme operating conditions. Fault diagnostics strategies are crucial to increase operational safety and reduce economic costs. This led to the research question is: Can a deep convolutional neural network (DCNN) with data fusion improve diagnostics of a planetary gearbox using simulated data? To answer this question, a DCNN framework was proposed to diagnose planetary gearbox with crack using simulated time and the frequency response. A finite element model was developed to generate a time-varying mesh stiffness response for gear tooth meshing at different crack levels. The mesh stiffness was expanded in terms of the Fourier series to generate values at any rotational speed and time interval. The generated mesh stiffness response was used on a dynamic model to generate the time and frequency response of the system. An additional data set was generated using feature-level data fusion. The two datasets were fed to the DCNN model to diagnose the crack faults and results were compared. It was shown that the feature-level data fusion method is very robust in diagnosing crack faults with good accuracy rates even with the presence of a high level of noise.

References

1.
Lei
,
Y.
,
Lin
,
J.
,
Zuo
,
M. J.
, and
He
,
Z.
,
2014
, “
Condition Monitoring and Fault Diagnosis of Planetary Gearboxes : A Review
,”
Measurement
,
48
, pp.
292
305
.
2.
Miao
,
Q.
, and
Zhou
,
Q.
,
2015
, “
Planetary Gearbox Vibration Signal Characteristics Analysis and Fault Diagnosis
,”
Shock Vib.
,
2015
, p.
126489
.
3.
Sharma
,
V.
, and
Parey
,
A.
,
2016
, “
A Review of Gear Fault Diagnosis Using Various Condition Indicators,” International Conference on Vibration Problems 2015
,
S. K.
Dwivedy
, and
R.
Tiwari
, eds.,
Elsevier Science, Amsterdam
,
Netherlands
, pp.
253
263
.
4.
Jin
,
X.
,
Cheng
,
F.
,
Peng
,
Y.
,
Qiao
,
W.
, and
Qu
,
L.
,
2018
, “
Drivetrain Gearbox Fault Diagnosis: Vibration-and Current-Based Approaches
,”
IEEE Ind. Appl. Mag.
,
24
(
6
), pp.
56
66
.
5.
Aherwar
,
A.
,
2012
, “
An Investigation on Gearbox Fault Detection Using Vibration Analysis Techniques: A Review
,”
Aust. J. Mech. Eng.
,
10
(
2
), pp.
169
183
.
6.
Dabetwar
,
S.
,
Ekwaro-Osire
,
S.
, and
Dias
,
J. P.
,
2021
, “
Damage Classification of Composites Based on Analysis of Lamb Wave Signals Using Machine Learning
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng.
,
7
(
1
), p.
011002
.
7.
Li
,
G.
,
Li
,
F.
,
Wang
,
Y.
, and
Dong
,
D.
,
2016
, “
Fault Diagnosis for a Multistage Planetary Gear Set Using Model-Based Simulation and Experimental Investigation
,”
Shock Vib.
,
2016
, p.
9263298
.
8.
Liang
,
X.
,
Zuo
,
M. J.
, and
Hoseini
,
M. R.
,
2015
, “
Vibration Signal Modeling of a Planetary Gear Set for Tooth Crack Detection
,”
Eng. Failure Anal.
,
48
, pp.
185
200
.
9.
Wang
,
Y.
, and
Cheng
,
Y.
,
2016
, “
An Approach to Fault Diagnosis for Gearbox Based on Image Processing
,”
Shock Vib.
,
2016
, p.
5898052
.
10.
Jiao
,
J.
,
Zhao
,
M.
,
Lin
,
J.
, and
Zhao
,
J.
,
2018
, “
A Multivariate Encoder Information Based Convolutional Neural Network for Intelligent Fault Diagnosis of Planetary Gearboxes
,”
Knowl. Based Syst.
,
160
, pp.
237
250
.
11.
He
,
M.
,
He
,
D.
,
Yoon
,
J.
,
Nostrand
,
T. J.
,
Zhu
,
J.
, and
Bechhoefer
,
E.
,
2019
, “
Wind Turbine Planetary Gearbox Feature Extraction and Fault Diagnosis Using a Deep-Learning-Based Approach
,”
Proc. Inst. Mech. Eng. Part O J. Risk Reliab.
,
303
(
3
), pp.
303
316
.
12.
Wang
,
Y.
,
Jin
,
Q.
,
Sun
,
G.
, and
Sun
,
C.
,
2019
, “
Planetary Gearbox Fault Feature Learning Using Conditional Variational Neural Networks Under Noise Environment
,”
Knowl. Based Syst.
,
163
, pp.
438
449
.
13.
Wang
,
X.
,
Qin
,
Y.
, and
Zhang
,
A.
,
2018
, “
An Intelligent Fault Diagnosis Approach for Planetary Gearboxes Based on Deep Belief Networks and Uniformed Features
,”
J. Intell. Fuzzy Syst.
,
34
(
6
), pp.
3619
3634
.
14.
Hatami
,
N.
,
Gavet
,
Y.
, and
Debayle
,
J.
,
2018
, “
Classification of Time-Series Images Using Deep Convolutional Neural Networks
,”
10th International Conference on Machine Vision
,
Vienna, Austria
,
Nov. 13–15, 2017
.
15.
Zhao
,
G.
,
Zhang
,
G.
,
Ge
,
Q.
, and
Liu
,
X.
,
2017
, “
Research Advances in Fault Diagnosis and Prognostic Based on Deep Learning
,”
Proceedings of Prognostics and System Health Management Conference
,
Chengdu, China
,
Oct. 19–21, 2016
.
16.
Liu
,
C.
,
Cheng
,
G.
,
Chen
,
X.
, and
Pang
,
Y.
,
2018
, “
Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN
,”
Sensors
,
18
(
1523
), pp.
1
20
.
17.
Zhang
,
W.
,
Peng
,
G.
,
Li
,
C.
,
Chen
,
Y.
, and
Zhang
,
Z.
,
2017
, “
A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals
,”
Sensors (Switzerland)
,
17
(
2
), p.
425
.
18.
Wen
,
L.
,
Gao
,
L.
,
Li
,
X.
,
Wang
,
L.
, and
Zhu
,
J.
,
2018
, “
A Jointed Signal Analysis and Convolutional Neural Network Method for Fault Diagnosis
,”
Procedia CIRP
,
72
, pp.
1084
1087
.
19.
Liang
,
X.
,
Zuo
,
M. J.
, and
Patel
,
T. H.
,
2014
, “
Evaluating the Time-Varying Mesh Stiffness of a Planetary Gear Set Using the Potential Energy Method
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
3
), pp.
535
547
.
20.
Wang
,
L.
, and
Shao
,
Y.
,
2017
, “
Fault Mode Analysis and Detection for Gear Tooth Crack During Its Propagating Process Based on Dynamic Simulation Method
,”
Eng. Failure Anal.
,
71
, pp.
166
178
.
21.
Gecgel
,
O.
,
Ekwaro-Osire
,
S.
,
Dias
,
J. P.
,
Nispel
,
A.
,
Alemayehu
,
F. M.
, and
Serwadda
,
A.
,
2019
, “Machine Learning in Crack Size Estimation of a Spur Gear Pair Using Simulated Vibration Data,”
Proceedings of the 10th International Conference on Rotor Dynamics—IFToMM. Mechanisms and Machine Science
,
K. L.
Cavalca
, and
H. I.
Weber
, eds.,
Springer
,
Cham, Switzerland
, pp.
175
190
.
22.
Cooley
,
C. G.
,
Liu
,
C.
,
Dai
,
X.
, and
Parker
,
R. G.
,
2016
, “
Gear Tooth Mesh Stiffness: A Comparison of Calculation Approaches
,”
Mech. Mach. Theory
,
105
, pp.
540
553
.
23.
Liang
,
X.
,
Zhang
,
H.
,
Zuo
,
M. J.
, and
Qin
,
Y.
,
2018
, “
Three New Models for Evaluation of Standard Involute Spur Gear Mesh Stiffness
,”
Mech. Syst. Signal Process
,
101
, pp.
424
434
.
24.
Xue
,
S.
,
Entwistle
,
R.
,
Mazhar
,
I.
, and
Howard
,
I.
,
2016
, “
The Spur Planetary Gear Torsional Stiffness and Its Crack Sensitivity Under Quasi-Static Conditions
,”
Eng. Failure Anal.
,
63
, pp.
106
120
.
25.
Parker
,
R. G.
,
Agashe
,
V.
, and
Vijayakar
,
S. M.
,
2000
, “
Dynamic Response of a Planetary Gear System Using a Finite Element/Contact Mechanics
,”
ASME J. Mech. Des.
,
122
(
3
), pp.
304
310
.
26.
Lin
,
J.
, and
Parker
,
R. G.
,
1999
, “
Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration
,”
ASME J. Vib. Acoust.
,
121
(
3
), pp.
316
321
.
27.
Chen
,
Z.
,
Zhu
,
Z.
, and
Shao
,
Y.
,
2015
, “
Fault Feature Analysis of Planetary Gear System With Tooth Root Crack and Flexible Ring Gear Rim
,”
Eng. Failure Anal.
,
49
, pp.
92
103
.
28.
Chaari
,
F.
,
Fakhfakh
,
T.
, and
Haddar
,
M.
,
2006
, “
Dynamic Analysis of a Planetary Gear Failure Caused by Tooth Pitting and Cracking
,”
J. Fail. Anal. Prev.
,
6
(
2
), pp.
73
78
.
29.
Harris
,
B. S. L.
,
1958
, “
Dynamic Loads on the Teeth of Spur Gears
,”
Proc. Inst. Mech. Eng.
,
172
(
1
), pp.
87
112
.
30.
Wang
,
J.
,
Zhang
,
J.
,
Yao
,
Z.
,
Yang
,
X.
,
Sun
,
R.
, and
Zhao
,
Y.
,
2019
, “
Nonlinear Characteristics of a Multi-Degree-of-Freedom Spur Gear System With Bending-Torsional Coupling Vibration
,”
Mech. Syst. Signal Process
,
121
, pp.
810
827
.
31.
Flek
,
J.
,
Dub
,
M.
,
Kolář
,
J.
,
Lopot
,
F.
, and
Petr
,
K.
,
2021
, “
Determination of Mesh Stiffness of Gear-Analytical Approach vs. Fem Analysis
,”
Appl. Sci.
,
11
(
11
).
32.
Wang
,
J. D.
, and
Howard
,
I. M.
,
2006
, “
Error Analysis on Finite Element Modeling of Involute Spur Gears
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
90
97
.
33.
Oehler
,
M.
,
Sauer
,
B.
, and
Magyar
,
B.
,
2019
, “
Efficiency of Worm Gear Drives Under Transient Operating Conditions
,”
ASME J. Tribol.
,
141
(
12
), p.
122201
.
34.
Ouyang
,
T.
,
Huang
,
G.
,
Chen
,
J.
,
Gao
,
B.
, and
Chen
,
N.
,
2019
, “
Investigation of Lubricating and Dynamic Performances for High-Speed Spur Gear Based on Tribo-Dynamic Theory
,”
Tribol. Int.
,
136
, pp.
421
431
.
35.
Podrug
,
S.
,
Glodež
,
S.
, and
Jelaska
,
D.
,
2011
, “
Numerical Modelling of Crack Growth in a Gear Tooth Root
,”
J. Mech. Eng.
,
57
(
7–8
), pp.
579
586
.
36.
Zhan
,
J.
,
Fard
,
M.
, and
Jazar
,
R.
,
2017
, “
A CAD-FEM-QSA Integration Technique for Determining the Time-Varying Meshing Stiffness of Gear Pairs
,”
Measurement
,
100
, pp.
139
149
.
37.
American Society of Mechanical Engineers
.
An Illustration of the Concepts of Verification and Validation in Computational Solid Mechanics
, ASME V&V 10.1-2012.
38.
Morais
,
T. S.
,
de Souza Leão
,
L.
,
Ap Cavalini
,
A.
, and
Steffen
,
V.
,
2020
, “
Rotating Machinery Health Evaluation by Modal Force Identification
,”
Inverse Probl. Sci. Eng.
,
28
(
5
), pp.
695
715
.
39.
Parker
,
R. G.
, and
Lin
,
J.
,
2004
, “
Mesh Phasing Relationships in Planetary and Epicyclic Gears
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
365
370
.
40.
Gecgel
,
O.
,
Ekwaro-Osire
,
S.
,
Dias
,
J. P.
,
Serwadda
,
A.
,
Alemayehu
,
F. M.
, and
Nispel
,
A.
,
2019
, “
Gearbox Fault Diagnostics Using Deep Learning With Simulated Data
,”
IEEE International Conference on Prognostics and Health Management
,
San Francisco, CA
,
June
, pp.
17
20
.
41.
Xun
,
C.
,
Long
,
X.
, and
Hua
,
H.
,
2018
, “
Effects of Random Tooth Profile Errors on the Dynamic Behaviors of Planetary Gears
,”
J. Sound Vib.
,
415
, pp.
91
110
.
42.
Jing
,
L.
,
Wang
,
T.
,
Zhao
,
M.
, and
Wang
,
P.
,
2017
, “
An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox
,”
Sensors
,
17
(
2
), p.
414
.
43.
Keras
. “
Keras Simple. Flexible. Powerful
”. https://keras.io/. Accessed November 1, 2020.
44.
Ioffe
,
S.
, and
Szegedy
,
C.
,
2015
, “
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
,”
32nd International Conference on Machine Learning, ICML 2015, International Machine Learning Society (IMLS)
,
Lille, France
,
July 6–11
, pp.
448
456
.
45.
Khan
,
M. I.
, and
Maity
,
R.
,
2020
, “
Hybrid Deep Learning Approach for Multi-Step-Ahead Daily Rainfall Prediction Using GCM Simulations
,”
IEEE Access
,
8
, pp.
52774
52784
.
46.
Parra
,
J.
, and
Vicuña
,
C. M.
,
2017
, “
Two Methods for Modeling Vibrations of Planetary Gearboxes Including Faults: Comparison and Validation
,”
Mech. Syst. Signal Process
,
92
, pp.
213
225
.
47.
Alves
,
D. S.
,
Daniel
,
G. B.
,
Castro
,
H. F. D.
,
Machado
,
T. H.
,
Cavalca
,
K. L.
,
Gecgel
,
O.
,
Dias
,
J. P.
, and
Ekwaro-Osire
,
S.
,
2020
, “
Uncertainty Quantification in Deep Convolutional Neural Network Diagnostics of Journal Bearings With Ovalization Fault
,”
Mech. Mach. Theory
,
149
, p.
103835
.
48.
Gecgel
,
O.
,
Dias
,
J. P.
,
Ekwaro-osire
,
S.
,
Alves
,
D. S.
,
Machado
,
T. H.
,
Daniel
,
G. B.
,
Castro
,
H. F. d.
, and
Cavalca
,
K. L.
,
2021
, “
Simulation-Driven Deep Learning Approach for Wear Diagnostics in Hydrodynamic Journal Bearings
,”
ASME J. Tribol.
,
143
(
8
), p.
084501
.
You do not currently have access to this content.