Abstract

In this work, the elastic wave propagation and dispersion characteristics of a curved tapered frame structure are investigated analytically. Separately, wave propagation through uniform curved and straight tapered beam was reported in the existing literature; however, no literature reports the influence of simultaneous bent and taper on the wave propagation. In particular, the band characteristics for the curved and tapered beam with two types of cross sections, i.e., rectangular and circular, are presented. The paper elucidates that introducing a small periodic bent angle cross section produces a complete, viz., axial and flexural bandgap in the low-frequency region, and conicity enhances the width of the band. It is also evidenced that a curved tapered frame with a solid circular cross section induces a wider bandgap than the rectangular section. A complete first normalized bandwidth of 159% is achievable for the circular cross section and 123% in the case of the rectangular section. The complete result is presented in a non-dimensional framework for wider applicability. An analysis of a finite tapered curved frame structure also demonstrates the attenuating characteristics obtained from the band structure of the infinite structure. The partial wave mode conversion, i.e., generation of coupled axial and flexural mode from a purely axial or flexural mode in an uncoupled medium, is observed. This wave conversion is perceived in reflected and transmitted waves while this curved tapered frame is inserted between the two uniform cross-sectional straight frames.

References

1.
Brillouin
,
L.
,
2003
,
Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices
,
Courier Corporation
,
New York
.
2.
Mead
,
D. J.
,
1970
, “
Free Wave Propagation in Periodically Supported, Infinite Beams
,”
J. Sound Vib.
,
11
(
2
), pp.
181
197
.
3.
Baz
,
A.
,
2001
, “
Active Control of Periodic Structures
,”
ASME J. Vib. Acoust.
,
123
(
4
), pp.
472
479
.
4.
Yan
,
Z.-Z.
,
Zhang
,
C.
, and
Wang
,
Y.-S.
,
2009
, “
Analysis of Wave Propagation and Localization in Periodic/Disordered Layered Composite Structures by a Mass-Spring Model
,”
Appl. Phys. Lett.
,
94
(
16
), p.
161909
.
5.
Hussein
,
M. I.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
,
2006
, “
Dispersive Elastodynamics of 1d Banded Materials and Structures: Analysis
,”
J. Sound Vib.
,
289
(
4
), pp.
779
806
.
6.
Banerjee
,
A.
,
2020
, “
Non-dimensional Analysis of the Elastic Beam Having Periodic Linear Spring Mass Resonators
,”
Meccanica
,
55
, pp.
1181
1191
.
7.
Liu
,
L.
, and
Hussein
,
M. I.
,
2012
, “
Wave Motion in Periodic Flexural Beams and Characterization of the Transition Between Bragg Scattering and Local Resonance
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011003
.
8.
Prasad
,
R.
, and
Sarkar
,
A.
,
2019
, “
Broadband Vibration Isolation for Rods and Beams Using Periodic Structure Theory
,”
ASME J. Appl. Mech.
,
86
(
2
), p.
021004
.
9.
Prasad
,
R.
, and
Banerjee
,
A.
,
2021
, “
Flexural Waves in Elastically Coupled Telescopic Metabeams
,”
ASME J. Vib. Acoust.
,
143
(
6
), p.
061009
.
10.
Banerjee
,
A.
,
2020
, “
Influence of the Torsional Vibration of the Periodically Attached Perpendicular Beam Resonator on the Flexural Band of a Euler–Bernoulli Beam
,”
Phys. Lett. A
,
384
(
29
), p.
126757
.
11.
Lee
,
S. Y.
, and
Ke
,
H. Y.
,
1992
, “
Flexural Wave Propagation in an Elastic Beam With Periodic Structure
,”
J. Appl. Mech.
,
59
(
2S
), pp.
S189
S196
.
12.
Wen
,
J.
,
Wang
,
G.
,
Yu
,
D.
,
Zhao
,
H.
, and
Liu
,
Y.
,
2005
, “
Theoretical and Experimental Investigation of Flexural Wave Propagation in Straight Beams With Periodic Structures: Application to a Vibration Isolation Structure
,”
J. Appl. Phys.
,
97
(
11
), p.
114907
.
13.
Xiang
,
H.-J.
, and
Shi
,
Z.-F.
,
2009
, “
Analysis of Flexural Vibration Band Gaps in Periodic Beams Using Differential Quadrature Method
,”
Comput. Struct.
,
87
(
23–24
), pp.
1559
1566
.
14.
Frandsen
,
N. M.
,
Bilal
,
O. R.
,
Jensen
,
J. S.
, and
Hussein
,
M. I.
,
2016
, “
Inertial Amplification of Continuous Structures: Large Band Gaps From Small Masses
,”
J. Appl. Phys.
,
119
(
12
), p.
124902
.
15.
Yuksel
,
O.
, and
Yilmaz
,
C.
,
2015
, “
Shape Optimization of Phononic Band Gap Structures Incorporating Inertial Amplification Mechanisms
,”
J. Sound Vib.
,
355
, pp.
232
245
.
16.
Barys
,
M.
,
Jensen
,
J. S.
, and
Frandsen
,
N. M.
,
2018
, “
Efficient Attenuation of Beam Vibrations by Inertial Amplification
,”
Eur. J. Mech. A/Solids
,
71
, pp.
245
257
.
17.
Li
,
J.
, and
Li
,
S.
,
2018
, “
Generating Ultra Wide Low-Frequency Gap for Transverse Wave Isolation Via Inertial Amplification Effects
,”
Phys. Lett. A
,
382
(
5
), pp.
241
247
.
18.
Yuksel
,
O.
, and
Yilmaz
,
C.
,
2020
, “
Realization of an Ultrawide Stop Band in a 2-d Elastic Metamaterial With Topologically Optimized Inertial Amplification Mechanisms
,”
Int. J. Solids Struct.
,
203
, pp.
138
150
.
19.
Banerjee
,
A.
,
Adhikari
,
S.
, and
Hussein
,
M. I.
,
2021
, “
Inertial Amplification Band-Gap Generation by Coupling a Levered Mass With a Locally Resonant Mass
,”
Int. J. Mech. Sci.
,
207
, p.
106630
.
20.
Lee
,
E. H.
, and
Yang
,
W. H.
,
1973
, “
On Waves in Composite Materials With Periodic Structure
,”
SIAM J. Appl. Math.
,
25
(
3
), pp.
492
499
.
21.
Shen
,
M.
, and
Cao
,
W.
,
2000
, “
Acoustic Bandgap Formation in a Periodic Structure With Multilayer Unit Cells
,”
J. Phys. D: Appl. Phys.
,
33
(
10
), p.
1150
.
22.
Ruzzene
,
M.
, and
Baz
,
A.
,
2000
, “
Attenuation and Localization of Wave Propagation in Periodic Rods Using Shape Memory Inserts
,”
Smart Mater. Struct.
,
9
(
6
), p.
805
.
23.
Adhikari
,
S.
, and
Banerjee
,
A.
,
2021
, “
Enhanced Low-Frequency Vibration Energy Harvesting With Inertial Amplifiers
,”
J. Intell. Mater. Syst. Struct
.
24.
Chowdhury
,
S.
,
Banerjee
,
A.
, and
Adhikari
,
S.
,
2021
, “
Enhanced Seismic Base Isolation Using Inertial Amplifiers
,”
Structures
,
33
, pp.
1340
1353
.
25.
Doyle
,
J. F.
,
1989
,
Wave Propagation in Structures
,
Springer
,
New York
.
26.
Chidamparam
,
P.
, and
Leissa
,
A. W.
,
1993
, “
Vibrations of Planar Curved Beams, Rings, and Arches
,”
Appl. Mech. Rev.
,
46
(
9
), pp.
467
483
.
27.
Yang
,
F.
,
Sedaghati
,
R.
, and
Esmailzadeh
,
E.
,
2018
, “
Free In-Plane Vibration of Curved Beam Structures: A Tutorial and the State of the Art
,”
J. Vib. Control
,
24
(
12
), pp.
2400
2417
.
28.
Liu
,
G.
, and
Wu
,
T.
,
2001
, “
In-Plane Vibration Analyses of Circular Arches by the Generalized Differential Quadrature Rule
,”
Int. J. Mech. Sci.
,
43
(
11
), pp.
2597
2611
.
29.
Baxy
,
A.
, and
Sarkar
,
A.
,
2020
, “
Natural Frequencies of a Rotating Curved Cantilever Beam: A Perturbation Method-Based Approach
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
234
(
9
), pp.
1706
1719
.
30.
Kang
,
B.
,
Riedel
,
C.
, and
Tan
,
C.
,
2003
, “
Free Vibration Analysis of Planar Curved Beams by Wave Propagation
,”
J. Sound Vib.
,
260
(
1
), pp.
19
44
.
31.
Lee
,
S.-K.
,
Mace
,
B.
, and
Brennan
,
M.
,
2007
, “
Wave Propagation, Reflection and Transmission in Curved Beams
,”
J. Sound Vib.
,
306
(
3–5
), pp.
636
656
.
32.
Trainiti
,
G.
,
Rimoli
,
J.
, and
Ruzzene
,
M.
,
2015
, “
Wave Propagation in Periodically Undulated Beams and Plates
,”
Int. J. Solids Struct.
,
75
, pp.
260
276
.
33.
Goto
,
A. M.
,
Nobrega
,
E. D.
, and
Dos Santos
,
J. M. C.
,
2019
, “
Dynamic Analysis of Phononic Crystal Curved Beam Using the Spectral Transfer Matrix Method
,”
Inter-Noise Noise-Con Congress Conf. Proc.
,
259
(
2
), pp.
7913
7924
.
34.
Pelat
,
A.
,
Gallot
,
T.
, and
Gautier
,
F.
,
2019
, “
On the Control of the First Bragg Band Gap in Periodic Continuously Corrugated Beam for Flexural Vibration
,”
J. Sound Vib.
,
446
, pp.
249
262
.
35.
Baxy
,
A.
,
Prasad
,
R.
, and
Banerjee
,
A.
,
2021
, “
Elastic Waves in Layered Periodic Curved Beams
,”
J. Sound Vib.
,
512
, p.
116387
.
36.
Zhang
,
P.
, and
Parnell
,
W. J.
,
2017
, “
Band Gap Formation and Tunability in Stretchable Serpentine Interconnects
,”
ASME J. Appl. Mech.
,
84
(
9
), p.
091007
.
37.
Bachour
,
R. S.
, and
Nicoletti
,
R.
,
2021
, “
Natural Frequencies and Band Gaps of Periodically Corrugated Beams
,”
ASME J. Vib. Acoust.
,
143
(
4
), p.
044502
.
38.
Prasad
,
R.
, and
Banerjee
,
A.
,
2020
, “
Influence of Conicity on the Free Wave Propagation in Symmetric Tapered Periodic Beam
,”
Mech. Res. Commun.
,
111
, p.
103655
.
39.
Floquet
,
G.
,
1883
, “
Sur les équations différentielles linéaires à coefficients périodiques
,”
Annales scientifiques de l’École normale supérieure
,
12
, pp.
47
88
.
40.
Rand
,
R. H.
,
2005
, “Lecture Notes on Nonlinear Vibrations,” Version 52, http://audiophile.tam.cornell.edu/randdocs/nlvibe52.pdf
41.
Walsh
,
S. J.
, and
White
,
R.
,
2000
, “
Vibrational Power Transmission in Curved Beams
,”
J. Sound Vib.
,
233
(
3
), pp.
455
488
.
42.
Meirovitch
,
L.
,
1975
,
Elements of Vibration Analysis
,
McGraw-Hill Companies
,
New York
.
43.
Lin
,
W.-W.
,
1987
, “
A New Method for Computing the Closed-Loop Eigenvalues of a Discrete-Time Algebraic Riccati Equation
,”
Linear Algebra Appl.
,
96
, pp.
157
180
.
44.
Prasad
,
R.
, and
Sarkar
,
A.
,
2021
, “
Broadband Seismic Isolation of Periodic Ladder Frame Structure
,”
J. Vib. Acoust.
,
143
(
1
), p.
0110066
.
45.
COMSOL AB
,
2020
, The Structural Mechanics Module User’s Guide, COMSOL Multiphysics®, 5.6, COMSOL AB, Stockholm.
46.
Banerjee
,
J.
, and
Williams
,
F.
,
1985
, “
Exact Bernoulli–Euler Dynamic Stiffness Matrix for a Range of Tapered Beams
,”
Int. J. Numer. Methods Eng.
,
21
(
12
), pp.
2289
2302
.
You do not currently have access to this content.