Abstract

The inerter pendulum vibration absorber (IPVA) is integrated between a spar and an annulus floater using a ball-screw mechanism to study its wave energy conversion potential. Hydrodynamic stiffness, added mass, and radiation damping effects on the spar-floater system are characterized using the boundary element method. It is found that a 1:2 internal resonance via a period-doubling bifurcation in the system is responsible for nonlinear energy transfer between the spar-floater system and the pendulum vibration absorber. This nonlinear energy transfer occurs when the primary harmonic solution of the system becomes unstable due to the 1:2 internal resonance phenomenon. The focus of this paper is to analyze this 1:2 internal resonance phenomenon near the first natural frequency of the system. The IPVA system when integrated with the spar-floater system is shown to outperform a linear coupling between the spar and the floater both in terms of the response amplitude operator (RAO) of the spar and one measure of the energy conversion potential of the system. Finally, experiments are performed on the IPVA system integrated with single-degree-of-freedom system (without any hydrodynamic effects) to observe the 1:2 internal resonance phenomenon and the nonlinear energy transfer between the primary mass and the pendulum vibration absorber. It is shown experimentally that the IPVA system outperforms a linear benchmark in terms of vibration suppression due to the energy transfer phenomenon.

References

1.
Falcão
,
A. F. D. O.
,
2010
, “
Wave Energy Utilization: A Review of the Technologies
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
899
918
.
2.
Gunn
,
K.
, and
Stock-Williams
,
C.
,
2012
, “
Quantifying the Global Wave Power Resource
,”
Renew. Energy
,
44
, pp.
296
304
.
3.
Baca
,
E.
,
Philip
,
R. T.
,
Greene
,
D.
, and
Battey
,
H.
,
2022
, “
Expert Elicitation for Wave Energy lcoe Futures
,”
Technical Report, National Renewable Energy Laboratory (NREL)
, Golden, CO.
4.
Association
,
U. E. I.
,
2022
, “
Levelized Costs of New Generation Resources in the Annual Energy Outlook 2022
,” US Department of Energy, March.
5.
Bedard
,
R.
,
Hagerman
,
G.
,
Previsic
,
M.
,
Siddiqui
,
O.
,
Thresher
,
R.
, and
Ram
,
B.
,
2005
, “
Final Summary Report, Project Definition Study, Offshore Wave Power Feasibility Demonstration Project
,”
Electric Power Research Institute Inc.
,
Palo Alto, CA
.
6.
Nguyen
,
H.
,
Wang
,
C.
,
Tay
,
Z.
, and
Luong
,
V.
,
2020
, “
Wave Energy Converter and Large Floating Platform Integration: A Review
,”
Ocean Eng.
,
213
, p.
107768
.
7.
Today
,
O. E.
,
2019
, “
Eni’s New Wave Power Device to Convert Mature Offshore Platforms Into Renewable Energy Hubs
,” Accessed January 31, 2021.
8.
Oliveira-Pinto
,
S.
,
Rosa-Santos
,
P.
, and
Taveira-Pinto
,
F.
,
2019
, “
Electricity Supply to Offshore Oil and Gas Platforms From Renewable Ocean Wave Energy: Overview and Case Study Analysis
,”
Energy Convers. Manage.
,
186
, pp.
556
569
.
9.
Bull
,
A. S.
, and
Love
,
M. S.
,
2019
, “
Worldwide Oil and Gas Platform Decommissioning: A Review of Practices and Reefing Options
,”
Ocean Coastal Manag.
,
168
, pp.
274
306
.
10.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,”
Technical Report, National Renewable Energy Laboratory (NREL)
, Golden, CO.
11.
Bureau of Safety and Environmental Enforcement
,
2021
, “
Platform Structures Online Query
,” Accessed February 1, 2021.
12.
Muliawan
,
M. J.
,
Karimirad
,
M.
, and
Moan
,
T.
,
2013
, “
Dynamic Response and Power Performance of a Combined Spar-Type Floating Wind Turbine and Coaxial Floating Wave Energy Converter
,”
Renew. Energy
,
50
, pp.
47
57
.
13.
Karimirad
,
M.
, and
Koushan
,
K.
,
2016
, “
Windwec: Combining Wind and Wave Energy Inspired by Hywind and Wavestar
,”
2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA)
,
Birmingham, UK
,
Nov. 20–23
, IEEE, pp.
96
101
.
14.
Cheng
,
Z.
,
Wen
,
T. R.
,
Ong
,
M. C.
, and
Wang
,
K.
,
2019
, “
Power Performance and Dynamic Responses of a Combined Floating Vertical Axis Wind Turbine and Wave Energy Converter Concept
,”
Energy
,
171
, pp.
190
204
.
15.
Michailides
,
C.
,
2021
, “
Hydrodynamic Response and Produced Power of a Combined Structure Consisting of a Spar and Heaving Type Wave Energy Converters
,”
Energies
,
14
(
1
), p.
225
.
16.
Babarit
,
A.
,
2015
, “
A Database of Capture Width Ratio of Wave Energy Converters
,”
Renew. Energy
,
80
, pp.
610
628
.
17.
Wan
,
L.
,
Gao
,
Z.
, and
Moan
,
T.
,
2015
, “
Experimental and Numerical Study of Hydrodynamic Responses of a Combined Wind and Wave Energy Converter Concept in Survival Modes
,”
Coastal Eng.
,
104
, pp.
151
169
.
18.
Suzuki
,
H.
, and
Sato
,
A.
,
2007
, “
Load on Turbine Blade Induced by Motion of Floating Platform and Design Requirement for the Platform
,”
ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
,
San Diego, CA
,
June 10–15
, Vol. 42711, pp.
519
525
.
19.
Yue
,
M.
,
Liu
,
Q.
,
Li
,
C.
,
Ding
,
Q.
,
Cheng
,
S.
, and
Zhu
,
H.
,
2020
, “
Effects of Heave Plate on Dynamic Response of Floating Wind Turbine Spar Platform Under the Coupling Effect of Wind and Wave
,”
Ocean Eng.
,
201
, p.
107103
.
20.
Koo
,
B.
,
Kim
,
M.
, and
Randall
,
R.
,
2004
, “
Mathieu Instability of a Spar Platform With Mooring and Risers
,”
Ocean Eng.
,
31
(
17–18
), pp.
2175
2208
.
21.
Subbulakshmi
,
A.
, and
Sundaravadivelu
,
R.
,
2016
, “
Heave Damping of Spar Platform for Offshore Wind Turbine With Heave Plate
,”
Ocean Eng.
,
121
, pp.
24
36
.
22.
Liang
,
C.
,
2016
, “
On the Dynamics and Design of a Wave Energy Converter With Mechanical Motion Rectifier
,” Ph.D. thesis,
State University of New York at Stony Brook
,
Stony Brook, NY
.
23.
Babarit
,
A.
,
Hals
,
J.
,
Muliawan
,
M. J.
,
Kurniawan
,
A.
,
Moan
,
T.
, and
Krokstad
,
J.
,
2012
, “
Numerical Benchmarking Study of a Selection of Wave Energy Converters
,”
Renew. Energy
,
41
, pp.
44
63
.
24.
Meng
,
F.
,
Sergiienko
,
N.
,
Ding
,
B.
,
Zhou
,
B.
,
Da Silva
,
L. S. P.
,
Cazzolato
,
B.
, and
Li
,
Y.
,
2023
, “
Co-Located Offshore Wind-Wave Energy Systems: Can Motion Suppression and Reliable Power Generation Be Achieved Simultaneously
,”
Appl. Energy
,
331
, p.
120373
.
25.
Yan
,
Z.
, and
Hajj
,
M. R.
,
2015
, “
Energy Harvesting From an Autoparametric Vibration Absorber
,”
Smart Mater. Struct.
,
24
(
11
), p.
115012
.
26.
Yan
,
Z.
, and
Hajj
,
M. R.
,
2017
, “
Nonlinear Performances of an Autoparametric Vibration-Based Piezoelastic Energy Harvester
,”
J. Intell. Material Syst. Struct.
,
28
(
2
), pp.
254
271
.
27.
Kecik
,
K.
,
2018
, “
Assessment of Energy Harvesting and Vibration Mitigation of a Pendulum Dynamic Absorber
,”
Mech. Syst. Signal Process.
,
106
, pp.
198
209
.
28.
Felix
,
J. L. P.
,
Balthazar
,
J. M.
,
Rocha
,
R. T.
,
Tusset
,
A. M.
, and
Janzen
,
F. C.
,
2018
, “
On Vibration Mitigation and Energy Harvesting of a Non-Ideal System With Autoparametric Vibration Absorber System
,”
Meccanica
,
53
(
13
), pp.
3177
3188
.
29.
Hatwal
,
H.
,
Mallik
,
A.
, and
Ghosh
,
A.
,
1983
, “
Forced Nonlinear Oscillations of an Autoparametric System–Part 1: Periodic Responses
.”
30.
Vyas
,
A.
, and
Bajaj
,
A.
,
2001
, “
Dynamics of Autoparametric Vibration Absorbers Using Multiple Pendulums
,”
J. Sound. Vib.
,
246
(
1
), pp.
115
135
.
31.
Gupta
,
A.
, and
Tai
,
W.-C.
,
2022
, “
The Response of an Inerter-Based Dynamic Vibration Absorber With a Parametrically Excited Centrifugal Pendulum
,”
ASME J. Vib. Acoust.
,
144
(
4
), p.
041011
.
32.
Gupta
,
A.
, and
Tai
,
W.-C.
,
2022
, “
Ocean Wave Energy Conversion of a Spar Platform Using a Nonlinear Inerter Pendulum Vibration Absorber
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol.
86311
,
American Society of Mechanical Engineers
, p.
V010T10A013
.
33.
Mérigaud
,
A.
,
2018
, “
A Harmonic Balance Framework for The Numerical Simulation of Non-Linear Wave Energy Converter Models in Random Seas
,” Ph.D. thesis, National University of Ireland, Maynooth, Ireland.
34.
Cummins
,
W.
,
Iiuhl
,
W.
, and
Uinm
,
A.
,
1962
, “
The Impulse Response Function and Ship Motions
.”
35.
Ogilvie
,
T. F.
,
1964
, “
Recent Progress Toward the Understanding and Prediction of Ship Motions
,”
5th ONSymposium on Naval Hydrodynamics
,
Bergen, Norway
,
Sept. 10–12
.
36.
Beatty
,
S. J.
,
Hall
,
M.
,
Buckham
,
B. J.
,
Wild
,
P.
, and
Bocking
,
B.
,
2015
, “
Experimental and Numerical Comparisons of Self-Reacting Point Absorber Wave Energy Converters in Regular Waves
,”
Ocean Eng.
,
104
, pp.
370
386
.
37.
Seebai
,
T.
, and
Sundaravadivelu
,
R.
,
2011
, “
Dynamic Analysis of Slack Moored Spar Platform With 5 MW Wind Turbine
,”
Ocean Syst. Eng.
,
1
(
4
), pp.
285
296
.
38.
Kristiansen
,
E.
,
Hjulstad
,
Å.
, and
Egeland
,
O.
,
2005
, “
State-Space Representation of Radiation Forces in Time-Domain Vessel Models
,”
Ocean Eng.
,
32
(
17–18
), pp.
2195
2216
.
39.
Li
,
X.
,
Chen
,
C.
,
Li
,
Q.
,
Xu
,
L.
,
Liang
,
C.
,
Ngo
,
K.
,
Parker
,
R. G.
, and
Zuo
,
L.
,
2020
, “
A Compact Mechanical Power Take-Off for Wave Energy Converters: Design, Analysis, and Test Verification
,”
Appl. Energy
,
278
, p.
115459
.
40.
Yurchenko
,
D.
, and
Alevras
,
P.
,
2018
, “
Parametric Pendulum Based Wave Energy Converter
,”
Mech. Syst. Signal Process.
,
99
, pp.
504
515
.
You do not currently have access to this content.