Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Bistable structures are widely used for vibration energy harvesting due to their wide bandwidths and extraordinary performance. However, the dynamics of bistable structures are complicated, and inter-well, intra-well, chaotic, superharmonic, and subharmonic vibrations may coexist in some frequency ranges. Inter-well vibration is typically the most desired because of its large oscillation amplitude, which means more kinetic energy can be converted into electricity via different energy transduction mechanisms. In this study, a modified bistable beam-slider vibration energy harvester consisting of a cantilever beam and a movable slider on the beam is investigated experimentally. The slider can move along the beam under the combined effect of the inertial and magnetic forces. Moreover, magnetic nonlinearity is incorporated into the beam to achieve bistability instead of the linear or monostable configurations typically found in existing literature studies. The slider trajectory and the bistable cantilever beam time responses show that the slider can help the bistable beam system transfer from the chaotic to the inter-well vibration orbit. The results show that inter-well vibration can be maintained even with disturbance introduced with 3.92 m/s2 base excitation over the 15 Hz–18 Hz frequency range. The whole transfer process is self-regulating and does not require any external intervention. Therefore, the harvester we designed is self-adaptive, with a substantially broadened operating bandwidth.

References

1.
Dutoit
,
N. E.
,
Wardle
,
B. L.
, and
Kim
,
S.-G.
,
2005
, “
Design Considerations for MEMS-Scale Piezoelectric Mechanical Vibration Energy Harvesters
,”
Integr. Ferroelectr.
,
71
(
1
), pp.
121
160
.
2.
Tang
,
L.
,
Yang
,
Y.
, and
Soh
,
C. K.
,
2010
, “
Toward Broadband Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
18
), pp.
1867
1897
.
3.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Quinn
,
D. D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040801
.
4.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.
5.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
, “
Broadband Piezoelectric Power Generation on High-Energy Orbits of the Bistable Duffing Oscillator With Electromechanical Coupling
,”
J. Sound Vib.
,
330
(
10
), pp.
2339
2353
.
6.
Zhou
,
S. X.
,
Cao
,
J. Y.
,
Inman
,
D. J.
,
Liu
,
S. S.
,
Wang
,
W.
, and
Lin
,
J.
,
2015
, “
Impact-Induced High-Energy Orbits of Nonlinear Energy Harvesters
,”
Appl. Phys. Lett.
,
106
(
9
), p.
093901
.
7.
Chen
,
K.
,
Zhang
,
X.
,
Xiang
,
X.
,
Shen
,
H.
,
Yang
,
Q.
,
Wang
,
J.
, and
Litak
,
G.
,
2023
, “
High Performance Piezoelectric Energy Harvester With Dual-Coupling Beams and Bistable Configurations
,”
J. Sound Vib.
,
561
, p.
117822
.
8.
Li
,
H.
,
Dong
,
B.
,
Cao
,
F.
,
Qin
,
W.
,
Ding
,
H.
, and
Chen
,
L.
,
2023
, “
Nonlinear Dynamical and Harvesting Characteristics of Bistable Energy Harvester Under Hybrid Base Vibration and Galloping
,”
Commun. Nonlinear Sci. Numer. Simul.
,
125
, p.
107400
.
9.
Lan
,
C.
,
Hu
,
G.
,
Liao
,
Y.
, and
Qin
,
W.
,
2021
, “
A Wind-Induced Negative Damping Method to Achieve High-Energy Orbit of a Nonlinear Vibration Energy Harvester
,”
Smart Mater. Struct.
,
30
(
2
), p.
02LT02
.
10.
Zhang
,
J.
,
Li
,
X.
,
Feng
,
X.
,
Li
,
R.
,
Dai
,
L.
, and
Yang
,
K.
,
2021
, “
A Novel Electromagnetic Bistable Vibration Energy Harvester With an Elastic Boundary: Numerical and Experimental Study
,”
Mech. Syst. Signal Process.
,
160
(
9
), p.
107937
.
11.
Wang
,
Z.
,
Li
,
T.
,
Du
,
Y.
,
Yan
,
Z.
, and
Tan
,
T.
,
2021
, “
Nonlinear Broadband Piezoelectric Vibration Energy Harvesting Enhanced by Inter-Well Modulation
,”
Energy Convers. Manage.
,
246
, p.
114661
.
12.
Masuda
,
A.
,
Senda
,
A.
,
Sanada
,
T.
, and
Sone
,
A.
,
2013
, “
Global Stabilization of High-Energy Response for a Duffing-Type Wideband Nonlinear Energy Harvester via Self-Excitation and Entrainment
,”
J. Intell. Mater. Syst. Struct.
,
24
(
13
), pp.
1598
1612
.
13.
Mallick
,
D.
,
Amann
,
A.
, and
Roy
,
S.
,
2016
, “
Surfing the High Energy Output Branch of Nonlinear Energy Harvesters
,”
Appl. Phys. Lett.
,
117
(
19
), p.
197701
.
14.
Tang
,
W.
,
Chen
,
Z.
,
Wang
,
Y.
, and
Wang
,
B.
,
2023
, “
High-Energy Response Activation for Bistable Energy Harvester With Variable Damping Control
,”
Sens. Actuators, A
,
350
, p.
114110
.
15.
Huang
,
Y.
,
Liu
,
W.
,
Yuan
,
Y.
, and
Zhang
,
Z.
,
2020
, “
High-Energy Orbit Attainment of a Nonlinear Beam Generator by Adjusting the Buckling Level
,”
Sens. Actuators, A
,
312
, p.
112164
.
16.
Huang
,
Y.
,
Zhao
,
Z.
, and
Liu
,
W.
,
2022
, “
Systematic Adjustment Strategy of a Nonlinear Beam Generator for High-Energy Orbit
,”
Mech. Syst. Signal Process.
,
166
, p.
108444
.
17.
Lan
,
C.
,
Tang
,
L.
, and
Qin
,
W.
,
2017
, “
Obtaining High-Energy Responses of Nonlinear Piezoelectric Energy Harvester by Voltage Impulse Perturbations
,”
Eur. Phys. J. Appl. Phys.
,
79
(
2
), p.
20902
.
18.
Miller
,
L. M.
,
Pillatsch
,
P.
,
Halvorsen
,
E.
,
Wright
,
P. K.
,
Yeatman
,
E. M.
, and
Holmes
,
A. S.
,
2013
, “
Experimental Passive Self-Tuning Behavior of a Beam Resonator With Sliding Proof Mass
,”
J. Sound Vib.
,
332
(
26
), pp.
7142
7152
.
19.
Aboulfotoh
,
N.
,
Twiefel
,
J.
,
Krack
,
M.
, and
Wallaschek
,
J.
,
2017
, “
Experimental Study on Performance Enhancement of a Piezoelectric Vibration Energy Harvester by Applying Self-Resonating Behavior
,”
Energy Harvest. Syst.
,
4
(
3
), pp.
131
136
.
20.
Gregg
,
C. G.
,
Pillatsch
,
P.
, and
Wright
,
P. K.
,
2014
, “
Passively Self-Tuning Piezoelectric Energy Harvesting System
,”
J. Phys.: Conf. Ser.
,
557
, p.
012123
.
21.
Pillatsch
,
P.
,
Miller
,
L. M.
,
Halvorsen
,
E.
,
Wright
,
P. K.
,
Yeatman
,
E. M.
, and
Holmes
,
A. S.
,
2013
, “
Self-Tuning Behavior of a Clamped-Clamped Beam With Sliding Proof Mass for Broadband Energy Harvesting
,”
J. Phys.: Conf. Ser.
,
476
, p.
012068
.
22.
Qin
,
Y.
,
Wei
,
T.
,
Zhao
,
Y.
, and
Chen
,
H.
,
2019
, “
Simulation and Experiment on Bridge-Shaped Nonlinear Piezoelectric Vibration Energy Harvester
,”
Smart Mater. Struct.
,
28
(
4
), p.
045015
.
23.
Koszewnik
,
A.
,
2020
, “
The Influence of a Slider Gap in the Beam–Slider Structure With an MFC Element on Energy Harvesting From the System: Experimental Case
,”
Acta Mech.
,
232
(
3
), pp.
819
833
.
24.
Shin
,
Y.-H.
,
Choi
,
J.
,
Kim
,
S. J.
,
Kim
,
S.
,
Maurya
,
D.
,
Sung
,
T.-H.
,
Priya
,
S.
,
Kang
,
C.-Y.
, and
Song
,
H.-C.
,
2020
, “
Automatic Resonance Tuning Mechanism for Ultra-Wide Bandwidth Mechanical Energy Harvesting
,”
Nano Energy
,
77
, p.
104986
.
25.
Krack
,
M.
,
Aboulfotoh
,
N.
,
Twiefel
,
J.
,
Wallaschek
,
J.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2016
, “
Toward Understanding the Self-Adaptive Dynamics of a Harmonically Forced Beam With a Sliding Mass
,”
Arch. Appl. Mech.
,
87
(
4
), pp.
699
720
.
26.
Müller
,
F.
,
Beck
,
M. W.
, and
Krack
,
M.
,
2023
, “
Experimental Validation of a Model for a Self-Adaptive Beam–Slider System
,”
Mech. Syst. Signal Process.
,
182
, p.
109551
.
27.
Lan
,
C.
,
Chen
,
Z.
,
Hu
,
G.
,
Liao
,
Y.
, and
Qin
,
W.
,
2021
, “
Achieve Frequency-Self-Tracking Energy Harvesting Using a Passively Adaptive Cantilever Beam
,”
Mech. Syst. Signal Process.
,
156
(
11
), p.
107672
.
28.
Wang
,
K.
,
Liu
,
W.
,
Tang
,
Y.
,
Pei
,
J.
,
Kang
,
S.
, and
Wu
,
Z.
,
2023
, “
Widening the Bandwidth of Vibration Energy Harvester by Automatically Tracking the Resonant Frequency With Magnetic Sliders
,”
Sustain. Energy Technol. Assessm.
,
58
(
4
), p.
103368
.
29.
Soltani
,
K.
, and
Rezazadeh
,
G.
,
2022
, “
Wide Range Tuning Behavior of a New Nonlinear Energy Harvester Based on the Beam–Slider Structure
,”
Arch. Appl. Mech.
,
92
(
10
), pp.
3013
3031
.
30.
Bukhari
,
M.
,
Malla
,
A.
,
Kim
,
H.
,
Barry
,
O.
, and
Zuo
,
L.
,
2020
, “
On a Self-Tuning Sliding-Mass Electromagnetic Energy Harvester
,”
AIP Adv.
,
10
(
9
), p.
095227
.
31.
Yu
,
L.
,
Tang
,
L.
, and
Yang
,
T.
,
2020
, “
Piezoelectric Passive Self-Tuning Energy Harvester Based on a Beam-Slider Structure
,”
J. Sound Vib.
,
489
, p.
115689
.
32.
Yu
,
L.
,
Tang
,
L.
, and
Yang
,
T.
,
2019
, “
Experimental Investigation of a Passive Self-Tuning Resonator Based on a Beam-Slider Structure
,”
Acta Mech. Sin.
,
35
(
5
), pp.
1079
1092
.
You do not currently have access to this content.